Avancées dans les matériaux granulaires : Réponses à la pression
La recherche se concentre sur comment on peut concevoir des matériaux granulaires pour gérer la pression de façon efficace.
― 8 min lire
Table des matières
Les Matériaux granulaires, comme le sable ou le riz, sont composés de plein de petites particules. Ces matériaux peuvent se comporter différemment selon la façon dont ils sont agencés. Quand tu les presses, leur forme change et leur réaction à la pression varie. Ce comportement rend les matériaux granulaires super intéressants à étudier, surtout quand on veut concevoir des matériaux qui contrôlent leur réponse à la pression.
C'est quoi les matériaux granulaires ?
Les matériaux granulaires se composent de grosses particules. Ces particules peuvent être rondes, comme de petites billes, ou avoir d'autres formes. Quand ces matériaux sont lâches, les particules peuvent bouger facilement. Mais si on applique suffisamment de pression, elles peuvent se bloquer ensemble et se comporter comme un solide. Ce blocage peut se faire sans que les particules aient besoin de bouger de leur place d'origine.
On trouve souvent ces matériaux dans la nature. Ils constituent une grande partie de la surface de la terre, comme les déserts et les lits de rivières. On les voit aussi dans plein de situations quotidiennes, comme quand on verse du sucre ou du sel dans nos plats.
Le Module de cisaillement
Une propriété importante des matériaux s'appelle le module de cisaillement. Ça décrit comment un matériau réagit quand il est tordu ou cisaillé. Par exemple, si tu pousses un côté d'un cube de sucre, le cube va se déformer au lieu de juste bouger. Le module de cisaillement nous dit combien il va se déformer selon la pression appliquée.
Dans les matériaux granulaires, le module de cisaillement peut changer selon que les particules sont bien serrées ou pas. Quand les matériaux granulaires sont comprimés, le module de cisaillement augmente généralement. Ça signifie qu'ils deviennent plus rigides et plus difficiles à déformer. Mais parfois, on veut créer des matériaux granulaires qui se comportent différemment, par exemple en devenant plus flexibles quand la pression augmente.
Métamatériaux granulaires tessellés
Pour y arriver, les chercheurs envisagent de créer des métamatériaux granulaires tessellés. Ces matériaux sont faits en connectant plein de petites unités ou cellules remplies de particules. Chaque cellule peut être conçue spécifiquement pour avoir certaines propriétés, comme sa réaction à la pression.
Chaque cellule peut être fabriquée avec différentes Conditions aux limites, qui influencent comment les particules à l'intérieur interagissent entre elles et avec les murs de la cellule. Il y a trois types principaux de conditions aux limites :
- Conditions de frontière périodiques (CBP) : Ça signifie que les bords de la cellule sont connectés entre eux, créant un motif répétitif.
- Murs de longueur fixe (MLF) : Dans cette configuration, les murs de la cellule ont une longueur fixe et ne changent pas.
- Murs flexibles (MF) : Ici, les murs peuvent bouger et s'ajuster en réponse aux particules à l'intérieur.
En étudiant comment chacune de ces cellules se comporte sous différentes pressions, les chercheurs peuvent voir comment concevoir un matériau plus grand qui répond à des besoins spécifiques.
Propriétés mécaniques des cellules individuelles
Les propriétés de ces cellules individuelles peuvent être assez différentes selon la condition aux limites utilisée. Par exemple, les cellules avec CBP peuvent montrer une augmentation cohérente du module de cisaillement à mesure que la pression augmente, tandis que celles avec MLF ou MF peuvent permettre plus de variations.
Quand les particules à l'intérieur d'une cellule sont bloquées, elles créent une configuration stable. Les configurations peuvent varier selon les conditions aux limites et la pression appliquée. Chaque cellule peut se comporter de manière indépendante ou affecter toute la structure quand plusieurs cellules sont combinées.
Comportement sous pression
Sous pression, les cellules avec CBP deviennent généralement plus rigides, c'est-à-dire que leur module de cisaillement augmente. Pour les cellules avec MLF et MF, en revanche, le module de cisaillement peut soit augmenter, soit diminuer avec la pression. Cette variabilité est utile pour créer des matériaux qui doivent réagir différemment selon les conditions.
Les chercheurs ont aussi découvert que les cellules avec des murs flexibles ont tendance à avoir plus de liberté dans leur comportement. Elles peuvent adapter légèrement leur forme en réponse à des forces externes, ce qui peut affecter comment le module de cisaillement change avec la pression.
Analyser la réponse mécanique
Pour bien étudier ces cellules, différentes tests sont menés pour examiner comment elles réagissent à la pression. Ça inclut de soumettre les cellules à des déformations compressives et de mesurer comment leur forme change.
Alors que les chercheurs appliquent du stress aux cellules, ils cherchent des changements de forme et la résistance globale du matériau. Ces tests sont cruciaux pour comprendre comment ces matériaux peuvent être utilisés dans des applications concrètes. Par exemple, s'ils peuvent être rendus plus forts ou plus flexibles selon les conditions, ils pourraient être utilisés dans divers secteurs, de la construction à la fabrication.
Calcul du champ de stress
Pour analyser comment ces cellules réagissent, une approche mathématique est utilisée pour calculer le champ de stress à l'intérieur de chaque cellule. Essentiellement, les chercheurs examinent comment les forces exercées sur les particules affectent la réponse mécanique globale. Ça aide à prédire comment des systèmes plus grands faits de ces cellules se comporteront.
Systèmes à grande échelle
Une fois qu'on comprend comment les cellules individuelles se comportent, les chercheurs peuvent combiner plusieurs cellules en systèmes plus grands. Ces systèmes peuvent être conçus pour avoir des propriétés spécifiques souhaitées pour des applications pratiques. L'idée est de garder les avantages des cellules individuelles tout en créant un matériau robuste qui peut gérer diverses pressions et forces.
Garder les propriétés
Une découverte intéressante est que les propriétés observées dans les cellules uniques peuvent être verrouillées dans des systèmes plus grands tant que certaines conditions sont maintenues. Par exemple, si les murs extérieurs des cellules sont fixés en place, le module de cisaillement peut se comporter de manière prévisible malgré l'appartenance à un assemblage plus grand.
Si les murs extérieurs sont autorisés à bouger librement pendant les tests, cela peut entraîner des comportements inattendus. Ce phénomène souligne l'importance de contrôler les limites du système pour garantir des propriétés matérielles cohérentes.
Directions futures
La recherche sur ces métamatériaux granulaires ouvre plusieurs pistes pour de futures explorations. Quelques domaines à rechercher incluent :
Comprendre le comportement anisotrope : Les propriétés mécaniques de ces matériaux devraient être caractérisées plus complètement. Les chercheurs veulent explorer comment différentes directions de cisaillement affectent les performances.
Variabilité des matériaux : Il y a un potentiel pour concevoir des cellules avec différentes formes et propriétés, permettant des applications diverses.
Études tridimensionnelles : Bien que beaucoup de recherches actuelles soient en deux dimensions, élargir ce travail en trois dimensions peut donner encore plus d'applications. La capacité d'adapter le module de cisaillement dans différentes directions ouvre de nouvelles possibilités.
Applications concrètes : Appliquer les connaissances acquises de ces études peut mener à des matériaux innovants utilisés dans la construction, l'aérospatiale et d'autres domaines qui nécessitent des propriétés matérielles précises.
Modélisation de comportements complexes : Utiliser des modèles informatiques pour simuler comment ces matériaux se comportent sous diverses conditions peut être bénéfique pour prédire des applications concrètes.
Conclusion
En résumé, concevoir des matériaux qui peuvent contrôler leur réponse à la pression en utilisant des métamatériaux granulaires tessellés est un domaine de recherche prometteur. En enquêtant sur comment chaque cellule se comporte sous différentes conditions et comment ces propriétés peuvent être utilisées dans des systèmes plus grands, les chercheurs visent à créer des matériaux avec des réponses adaptées aux forces mécaniques. Ce travail non seulement améliore notre compréhension des matériaux granulaires mais ouvre aussi la voie à de nouvelles technologies et applications dans divers secteurs.
Titre: Designing the pressure-dependent shear modulus using tessellated granular metamaterials
Résumé: Jammed packings of granular materials display complex mechanical response. For example, the ensemble-averaged shear modulus $\left\langle G \right\rangle$ increases as a power-law in pressure $p$ for static packings of soft spherical particles that can rearrange during compression. We seek to design granular materials with shear moduli that can either increase {\it or} decrease with pressure without particle rearrangements even in the large-system limit. To do this, we construct {\it tessellated} granular metamaterials by joining multiple particle-filled cells together. We focus on cells that contain a small number of bidisperse disks in two dimensions. We first study the mechanical properties of individual disk-filled cells with three types of boundaries: periodic boundary conditions (PBC), fixed-length walls (FXW), and flexible walls (FLW). Hypostatic jammed packings are found for cells with FLW, but not in cells with PBC and FXW, and they are stabilized by quartic modes of the dynamical matrix. The shear modulus of a single cell depends linearly on $p$. We find that the slope of the shear modulus with pressure, $\lambda_c < 0$ for all packings in single cells with PBC where the number of particles per cell $N \ge 6$. In contrast, single cells with FXW and FLW can possess $\lambda_c > 0$, as well as $\lambda_c < 0$, for $N \le 16$. We show that we can force the mechanical properties of multi-cell granular metamaterials to possess those of single cells by constraining the endpoints of the outer walls and enforcing an affine shear response. These studies demonstrate that tessellated granular metamaterials provide a novel platform for the design of soft materials with specified mechanical properties.
Auteurs: Jerry Zhang, Dong Wang, Weiwei Jin, Annie Xia, Nidhi Pashine, Rebecca Kramer-Bottiglio, Mark D. Shattuck, Corey S. O'Hern
Dernière mise à jour: 2023-09-10 00:00:00
Langue: English
Source URL: https://arxiv.org/abs/2303.10300
Source PDF: https://arxiv.org/pdf/2303.10300
Licence: https://creativecommons.org/licenses/by/4.0/
Changements: Ce résumé a été créé avec l'aide de l'IA et peut contenir des inexactitudes. Pour obtenir des informations précises, veuillez vous référer aux documents sources originaux dont les liens figurent ici.
Merci à arxiv pour l'utilisation de son interopérabilité en libre accès.