Évaluation des réseaux Kolmogorov-Arnold en physique des hautes énergies
Une évaluation des KAN pour des tâches en physique des hautes énergies.
E. Abasov, P. Volkov, G. Vorotnikov, L. Dudko, A. Zaborenko, E. Iudin, A. Markina, M. Perfilov
― 6 min lire
Table des matières
L'apprentissage automatique est devenu un outil super utile dans le domaine de la physique des hautes énergies. Ces dernières années, les chercheurs ont utilisé différents types de réseaux de neurones pour aider dans des tâches comme la reconstruction d'événements, la classification de processus, et l'identification de particules. Les réseaux de neurones traditionnels, surtout ceux basés sur des perceptrons, ont été largement utilisés, mais maintenant, les chercheurs examinent de nouveaux modèles qui pourraient offrir de meilleures performances et interprétabilité.
Une approche prometteuse est le Réseau Kolmogorov-Arnold (KAN), qui a récemment attiré l’attention. Ce modèle se distingue des réseaux standard basés sur des perceptrons en utilisant des splines au lieu de fonctions linéaires. Ce changement pourrait améliorer la précision et permettre une meilleure compréhension des sorties du réseau. Dans cet article, on va voir comment les KAN peuvent être appliqués en physique des hautes énergies, en se concentrant sur deux tâches spécifiques.
Tâche 1 : Séparation des processus multijets
La première application dont on va parler est la séparation des processus multijets dans les collisions proton-proton. Les processus multijets, qui sont une issue commune lors des événements à haute énergie, peuvent rendre l'analyse de données compliquée à cause de leurs taux de production élevés. Identifier ces processus est crucial pour une analyse précise et la compréhension des événements de top-quark unique.
Traditionnellement, les techniques pour gérer ce bruit de fond impliquent d'appliquer des coupes sur des variables cinématiques. Bien que ces coupes puissent réduire le bruit du fond multijet, elles éliminent aussi certaines données pertinentes, rendant plus difficile l'analyse des événements suivants. Pour résoudre ce problème, les méthodes d'apprentissage automatique peuvent être bien plus efficaces.
Un perceptron multi-couches (MLP) basique a été entraîné pour classifier les événements comme étant multijets ou autres processus. Il a obtenu une bonne performance, avec un score suggérant une précision dans la distinction entre les deux types. Le MLP est conçu avec deux couches et utilise des fonctions d'activation et des méthodes d'entraînement spécifiques pour améliorer sa performance. Cependant, même si cette méthode montre du potentiel, il est important de vérifier si les KAN peuvent produire de meilleurs résultats.
Implémentation du KAN pour la séparation des multijets
Pour tester l'efficacité des KAN dans ce contexte, une première implémentation a été réalisée en utilisant une bibliothèque existante. Bien que cette bibliothèque offre de puissantes fonctionnalités, elle avait quelques bugs qui affectaient son utilisation. Du coup, différentes fonctions de perte ont été utilisées pour entraîner les KAN.
Les KAN ont été testés avec une configuration spécifique et des setups, y compris l'utilisation de fonctions B-spline locales pour gérer les données. Malheureusement, les résultats ont montré que les KAN ne surpassaient pas le MLP de base. En fait, leur performance était légèrement inférieure à celle du MLP. Les KAN n'ont pas géré la tâche aussi bien qu'on l'espérait à cause de certaines limitations dans leur implémentation.
Une deuxième implémentation de KAN, appelée le KAN Efficace (eKAN), a aussi été évaluée. Bien qu'il n'ait pas autant de fonctionnalités, il offrait un environnement de formation plus stable. Cette version a permis d'utiliser une fonction de perte plus adaptée, améliorant sa performance de classification. Malgré tout, l'eKAN n'a toujours pas dépassé le MLP de base.
Tâche 2 : Reconstruction de la moment manquant
En passant à la deuxième application, on se penche sur le défi de la reconstruction du moment dans des événements impliquant de la Matière noire. Cette tâche est essentielle pour comprendre les interactions entre les particules du modèle standard et les candidates à la matière noire. La matière noire est un domaine d'intérêt majeur en physique, et son comportement dans des processus à haute énergie peut révéler beaucoup sur ses propriétés.
Un des principaux défis est d'identifier avec précision les contributions des neutrinos et des médiateurs de matière noire lors de la reconstruction des caractéristiques de ces particules. Les chercheurs commencent généralement avec un MLP de base pour réaliser cette reconstruction. Cependant, le MLP a des limitations pour capturer précisément les détails nécessaires des particules de matière noire.
En comparaison, le KAN a également été entraîné pour cet objectif en utilisant des données similaires. Les deux approches (MLP et KAN) ont été évaluées sur leur capacité à identifier les moments des particules. Bien que la performance des deux réseaux soit relativement proche, le MLP a légèrement surpassé le KAN. Cela suggère que même si les KAN sont prometteurs, ils n'ont pas encore totalement démontré leurs avantages dans cette application.
Ajustement des hyperparamètres
Pour les deux tâches, les hyperparamètres jouent un rôle crucial dans la performance du réseau. Pour le KAN, des facteurs tels que la taille de la grille, le nombre de couches cachées, et le nombre de nœuds ont été ajustés pour trouver le meilleur setup. Malgré des ajustements fins, les KAN n'ont toujours pas réussi à surpasser le MLP, indiquant que les méthodes traditionnelles peuvent rester supérieures pour certaines tâches.
Conclusion
En résumé, les Réseaux Kolmogorov-Arnold présentent une nouvelle approche de l'apprentissage automatique en physique, offrant certains avantages par rapport aux modèles traditionnels basés sur les perceptrons. Cependant, à ce stade, les implémentations actuelles des KAN ne surpassent pas systématiquement les techniques établies comme les MLP. De nombreux facteurs contribuent à cela, y compris des problèmes persistants avec les bibliothèques KAN existantes et le besoin de plus de raffinement et de mises à jour.
Malgré leurs limitations actuelles, les KAN continuent de garder un potentiel. À mesure que les recherches futures s'appuient sur ces modèles et résolvent les bugs existants dans les implémentations actuelles, les KAN pourraient vraiment devenir un outil plus puissant dans l'analyse de données complexes en physique des hautes énergies. Avec plus de développements, ils pourraient potentiellement offrir des performances améliorées et des insights plus profonds sur divers processus à haute énergie. Le potentiel des KAN pour améliorer comment on analyse et comprend les événements à haute énergie reste une avenue de recherche excitante.
Titre: Application of Kolmogorov-Arnold Networks in high energy physics
Résumé: Kolmogorov-Arnold Networks represent a recent advancement in machine learning, with the potential to outperform traditional perceptron-based neural networks across various domains as well as provide more interpretability with the use of symbolic formulas and pruning. This study explores the application of KANs to specific tasks in high-energy physics. We evaluate the performance of KANs in distinguishing multijet processes in proton-proton collisions and in reconstructing missing transverse momentum in events involving dark matter.
Auteurs: E. Abasov, P. Volkov, G. Vorotnikov, L. Dudko, A. Zaborenko, E. Iudin, A. Markina, M. Perfilov
Dernière mise à jour: 2024-09-25 00:00:00
Langue: English
Source URL: https://arxiv.org/abs/2409.01724
Source PDF: https://arxiv.org/pdf/2409.01724
Licence: https://creativecommons.org/licenses/by/4.0/
Changements: Ce résumé a été créé avec l'aide de l'IA et peut contenir des inexactitudes. Pour obtenir des informations précises, veuillez vous référer aux documents sources originaux dont les liens figurent ici.
Merci à arxiv pour l'utilisation de son interopérabilité en libre accès.