Simple Science

Hochmoderne Wissenschaft einfach erklärt

Was bedeutet "Pisano-Periode"?

Inhaltsverzeichnis

Die Pisano-Periode ist ein Konzept, das mit der Fibonacci-Folge zu tun hat und beschreibt, wie sich deren Zahlen verhalten, wenn wir sie auf eine bestimmte Weise betrachten, die man Modul nennt. Ganz einfach gesagt: Wenn wir die Fibonacci-Zahlen nehmen und sie durch eine Zahl teilen, beginnen die Reste nach einer Weile sich zu wiederholen. Dieser sich wiederholende Zyklus ist das, was wir die Pisano-Periode nennen.

Eigenschaften der Pisano-Perioden

Jede positive ganze Zahl größer als eins hat eine Pisano-Periode. Die Länge dieser Periode kann je nach der Zahl, durch die wir teilen, variieren. Interessanterweise haben die Pisano-Perioden in vielen Fällen ein paar Nullen, die in regelmäßigen Abständen auftauchen.

Verbindung zu K-Fibonacci-Zahlen

K-Fibonacci-Zahlen sind eine Verallgemeinerung der Fibonacci-Folge, bei der jede Zahl durch eine Wert 'K' zusammen mit den zwei vorherigen Zahlen gebildet wird. Genau wie die normalen Fibonacci-Zahlen haben auch die K-Fibonacci-Zahlen Pisano-Perioden, und das Muster der Nullen innerhalb dieser Perioden hängt von den Primfaktoren der Zahl ab, durch die wir teilen.

Fixpunkte

Einige Zahlen haben eine besondere Eigenschaft, bei der die Pisano-Periode der Zahl entspricht, die wir betrachten. Diese Zahlen nennt man Fixpunkte. Bei K-Fibonacci-Folgen hängen die Fixpunkte davon ab, wie 'K' in kleinere Faktoren zerlegt werden kann. Wenn wir weiterhin größere Zahlen betrachten, werden wir letztendlich diese Fixpunkte finden, wenn wir die K-Fibonacci-Folge verwenden.

Neuste Artikel für Pisano-Periode